Hw 53. I. Let m > En T E (i.e. E = ÜEn & En & En L En+I V n) Show that m(En) ↑ m(E) (i.e. lim m(En) = m(E) ≤ +00 A m(En) ≤ m(En+1) ∀ n). Show that on FEn VE d m(E)<+10 ⇒
2. Any Fo - set K can be represented as m(Env/m(E)) the union of ascending sequence of closed sets (because the union of finitely many closed sets ú closed). 3. The union of countably many For-nets is a Fo-ret. 4. Let & consist of all functions representable as $\tilde{\Sigma}_{ci} \chi_{E_i}$ with $c_i \in \mathbb{R} + E_i \in \mathcal{M} \quad \forall i_i$ Let $\mathcal{S}_{0:} = \{f \in \mathcal{S} : \exists E \notin measure m(E) < too$ s.t. f=0 on IR\E}. Show mut & fE.So and YESO Ja pinile-length interval [a,b] and step-function 4, continuous function from IR to IR vanishing outside [a,b] s.t. f= f on IRIA, & f=g on IRIA, & for some "exception Ret" A of measure < E.

5. Let
$$f \in MF(E; \mathbb{R})$$
 meaning that
 $E \in M$ and $f: E \rightarrow \mathbb{R}$ and
 $f'(I)_{:} = \{x \in E: f(x) \in I\} \in M$ for
each finite-length interval $I (\in O_0 \text{ in}$
notation). Show that $f'(I) \in M$
for each interval (so $L(I) \leq +\infty$) and
that $f'(IY) \in M \forall Y \in \mathbb{R}$.

K. Let E ∈ M and f: E → R. Show that
F 5 A E :
(1) f ∈ M(E; IR) .
(ii) {x ∈ E: ∝ ≤ f(x)} ∈ om ∀ ∝ ∈ IR .
(iii) {x ∈ E: ∝ ≤ f(x)} ∈ om ∀ ∝ ∈ IR .
(iv) {x ∈ E: ∝ > f(x)} ∈ om ∀ ∝ ∈ IR .
(v) {x ∈ E: ∝ > f(x)} ∈ om ∀ ∝ ∈ IR .

Let f ∈ MF(E; IR) and g: E→IR. Show that (a) Af ~ g (in the sense that f(x) = g(x)) ∀ x ∈ E \ A with some A ∈ Mo then g ∈ MF(E; IR).

(b) $f, g \in MF(E; IR)$. Show that $f+g \in MF(E; R)$. Hint $\forall \alpha \in IR$ $\{x \in E: \alpha < f(\alpha) + g(\alpha)\}\$ $= \{\gamma \in E: \alpha - g(\alpha) \land \gamma < f(\alpha) \text{ for some } r \in Q$ $= \bigcap_{\gamma \in Q} \{x \in E: \alpha - \gamma < g(\alpha)\} \land \{x \in E: \gamma < f(\alpha)\}\$

8. Let E=E, V. Ez with EI. Ez, EEM. Showhat femf(E;IR) iff (fl_E,IR) fl_E MTF(E1;IR) fl_E MTF(E1;IR) fl_E MTF(E2;IR) fl_E MTF(E2;IR) fl_E MTF(E2;IR) fl_E MTF(E2;IR) $f: E \rightarrow (0, +\infty)$ $g: E \rightarrow \mathbb{R} \setminus \{0\}$. Show that f, g & MF(R, R). 10^{*} Let EEM, and f, g $\in MF(E; IR)$; let α , $\beta \in IR$. Show that $\alpha \notin \beta \notin \beta \notin \beta^2$, $fg(=\frac{(f+g)^2 - f^2 - g^2}{2}) \in MF(E; IR)$ $fvg(:= max\{f, g\}; x \mapsto max\{fxr, gar)\} \in MF(E; IR)$ $f \land g \in m(F; \mathbb{R})$ If (m(F; IR),

and $\frac{1}{g}$, $\frac{f}{g} \in \mathcal{MF}(E;\mathbb{R})$ provided that $g(x) \neq 0 \forall x \in E$.